Published: 05.08.2025

Why this matters?

The past eighteen months have seen a triple jump in generative‑AI capability:

  • Language models now reason across text, images, audio and code in near‑real time.
  • Video generators have moved from coarse GIF‑style clips to minute‑long, cinematic sequences.
  • AI‑organised search results hint at a new optimisation target for content creators. This article distils what’s new, how the tools compare, and practical steps to future‑proof your prompts.
Emerging AI Models & Trends (August 2025)

1 · GPT‑5 and the next generation of LLMs

What’s new in GPT‑5?

OpenAI’s next flagship (launch window August 2025) bundles browsing, coding, analysis and vision into one unified model and introduces mini / nano variants for cost‑sensitive workloads. Early testers report faster tool‑calling, improved chain‑of‑thought transparency and a true 1 M‑token context window

GPT‑5 vs GPT‑4o vs Claude 3

ModelKey strengthsInput $/MtokOutput $/MtokNotable limits
GPT‑5 (rumoured)Unified multimodal, 1 M ctx, tool‑switchingest. $5est. $15still under NDA
GPT‑4oReal‑time vision+voice, low latency$0.15*$0.60*128 K ctx cap
Claude 3 OpusStrong reasoning, 200 K ctx$15$75higher latency 
(anthropic.com)
Claude 3 SonnetBalanced speed/cost$3$15200 K ctx 
(anthropic.com)
Claude 3 Haiku<3 s responses, lowest cost$0.25$1.25200 K ctx
(anthropic.com)

Updating your prompts for GPT‑5

  • Single‑tool assumption: Remove explicit calls like “Use the browser tool”—GPT‑5 decides autonomously.
  • Long‑context discipline: Use headings (##), numbered lists and <excerpts> tags so the model can skim massive inputs.
  • Reasoning exposure: Add “Show your intermediate reasoning in XML.” GPT‑5 can nest tool‑calls inside XML blocks.
  • Variant targeting: For mini/nano tiers, specify budget <= $X in system instructions to trigger cheaper inference.
System (GPT‑5): You are an expert research assistant. Budget ≤ $1.
User: Analyse the attached 40‑page PDF and draft a 200‑word abstract.


2 · Video‑model landscape 2025

Four headline models at a glance

  • Dream Machine (Luma Labs) – Physics‑aware motion, ultra‑realistic textures (lumalabs.ai).
  • Kling 2.1 (Kuaishou) – Photorealism, lip‑sync TTS, up to 3‑min clips (help.scenario.com, pollo.ai).
  • Pika v2.2 (Pika Labs) – Fast iteration, strong character consistency (pollo.ai).
  • Sora 2 (OpenAI) – Storyboarding flexibility, needs polish on realism (techradar.com).

Strengths & best use‑cases

  • Dream Machine: product ads, dynamic scene visualisation.
  • Kling: music videos, influencer content where lip sync matters.
  • Pika: anime & stylised shorts, repeatable mascots.
  • Sora 2: concept trailers, quick mood boards. Benchmarks show Kling and Luma leading on motion fidelity, while Pika wins for character re‑use; Sora excels at creative camera moves (tomsguide.com).

Demo prompt templates

# Dream Machine
Aerial dolly‑in over a neon‑lit Tokyo street, rain‑soaked asphalt reflecting signs, 4‑s clip, high‑detail.

# Kling
Close‑up of a singer performing under warm stage lights, realistic lip‑sync, 8‑bar pop melody, 1080p 30 fps.

# Pika v2.2
Side‑scrolling scene: pixel‑art knight runs through a forest, seamless loop, 5 sec.

# Sora 2
Victorian library, camera orbits protagonist reading, golden‑hour shafts of light, depth‑of‑field, 6 sec.

Common limitations & work‑arounds

  • Multi‑character coherence: Split complex scenes into single‑character shots and stitch later.
  • Lip‑sync drift (non‑Kling models): Add “maintain mouth closed except during words” and restrict dialogue length.
  • Motion artefacts in long clips (>10 s): Break into overlapping takes and regenerate transitions.

Google’s Web Guide (Search Labs) clusters links by topic using a custom Gemini model (blog.google). Early testers note richer “mind‑map” layouts for broad queries—great for discovery, tricky for SEO.

Content‑structuring tips

  • Topical clusters: Use <h2> for each sub‑topic; include 2‑3 authoritative links per cluster.
  • Concise summaries: Web Guide surfaces AI snippets first—lead each section with a 20–25‑word TL;DR.
  • Entity variety: Mix perspectives (research, news, forum) so Gemini can diversify its clusters.
  • Schema markup: Add FAQPage and HowTo where relevant; structured data is still used to ground cluster labels.
<h2>Solar Panel Efficiency Basics</h2>
<p>Quick‑read TL;DR: Modern panels convert 21–24 % of sunlight into electricity.</p>
<ul>
  <li>Research – NREL 2025 efficiency chart</li>
  <li>News – TechCrunch breakthrough coverage</li>
  <li>Forum – Reddit r/solar user install guide</li>
</ul>


Take‑aways

  1. Unify prompts: GPT‑5 prefers holistic instructions—specify budget, context and desired tool‑flows in one go.
  2. Modularise video generation: Treat each shot as an atomic unit; use model strengths accordingly.
  3. Write for clusters, not keywords: Gemini’s Web Guide rewards structured, multi‑perspective content.

Stay agile, experiment often, and keep refining your prompt playbook—the AI frontier is moving faster than ever.